DOCUMENT RESUME

ED 396 698 IR 017 874

AUTHOR Kurtz, Barry L.; O'Neal, Micheal B.

TITLE A Software Laboratory Environment for Computer-Based
Problem Solving.

PUB DATE 94

NOTE 8p.; In: Recreating the Revolution. Proceedings of

the Annual National Educational Computing Conference
(15th, Boston, Massachusetts, June 13-15, 1994); see

IR 017 841.

PUE YPE Reports — Descriptive (141) -- Speeches/Confe-ence
Papers (150)

EDRS PRICE MFO1/PC0O1 Plus Postage.

DESCRIPTORS *Computer Assisted Instruction; Computer Graphics;

*Computer Science; *Computer Simulation; Databases;
*Educational Technology; Engineers; Higher Education;
*Learning Laboratories; Problem Solving; Programming;
Spreadsheets

IDENTIFIERS Louisiana Technological University

ABSTRACT

This paper describes a National Science
Foundation—sponsored projrct at Louisiana Technological University to
develop computer-based luboratories for "hands—on" introductions to
major topics of computer science. The underlying strategy is to
develop structured laboratory environments that present abstract
concepts through the use of computer simulations. These simulations
allow students to explore meaningful, but domain limited, problems
that are representative of real problems solved by computer
scientists and computer engineers. The laboratories focus on:
spreadsheets; relational databases; data structures; graphics; the
imperative, functional, and logical programming paradigms; and
digital logic. Types of laboratories that are candidates for future
development include finite state automata; automatic theorem proving;
and machine organization and assembly language. In order to insure
that the laboratory experiences are useful from a pedagogical
standpoint, a rigrous evaluation program will be conducted. Pre- and
posttests will be used to measure the changes in, and generalization
of, problem solving abilities. Standardized instruments for measuring
student attitudes will also be used. (Contains 11 references.)

(AEF)

oe o't Yo o't e Yo v vle o de vl Ve e ve o e de U o e e o' et o't oo vl o't e o' Ye v'e ot o e v o dle e vfe v ol Pl dle v e dle e e ofe e o o e e de St de s s el e S e Sttt

¢

Reproductions supplied by EDRS are the best that can be made *
from the original document. %

e ve 3% ¥e ve v o ot v v e 3% o e vl e v e o't s o' 9 o e oo Je o't e 9% 9 v vt v dle vl o v e vl ol ol e st e e e e e et de s e e e e e e e Yl e st e de e et

¥

‘U S ,{%EPARTME‘NT OF ENUCATION
t‘l‘ . e A I BT FERY L Th
EDUCATIONAL RESOURCES INVORMATION
CENTER IERIC)

O Tris decament has neen repreduced as
teceog om the person or o) 3.,:»./&1";'1
O aching of

0 Minot changes have teen mane 1o
SRIOVE 10PIOUUCON guaity

ED 396 698

. <
Points of viev, of opiions stated m this
document do riol necessary represent
"
offical OERI pasiton or poltcy

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Donella Ingham

TO THE EDUCATIONAL RESOURGCES
INFORMATION CENTER (ERIC).”

Paper (W4-202B) -

A Software Laboratory Environment for Computer-
based Problem Solving -

Barry L Kurtz) Micheal B. O'Nedl
kurtz@engr.latech.edu i Computer Science Department
Louisiana Tech Unitersity
Box 10348
Ruston, [A 71272
(318) 257-2436
mike@engr.latech.edu

Key words: computer literacy, computer science, simulations, problem-solving

Abstract -

This paper describes an NSE sponsored project to develop computer-based laboratory experiences for “hands-on”
introductions to many of the major topics appropriate for an overview of computer science. Our underlying strategy is to
develop structured laboratory environments that are designed to present abstract concepts through the use of computer-
based simulations. These simulations will allow.students to explore meaningful, but domain limited, problems that are
representative of real problems solved by computer scientists and computer engineers.

Introduction

The current student profile in our “computer literacy” course (CS100) is quite heterogeneous. About 40-50% of the
students are computer science majors, while the remainder are drawn from programs throughout the University. Typically,
30-40% of the students in CS100 are women, while approximately 25% of the class is composed of ethnic minorities
(predominately African American). These students represent a wide range of interests and abilities. Most have litde or mo
background in college-level mathernatics.

%74

"Recreating the Rerolution” K

RIC 2 BEST copy AVAILABLE

345

4RO\

AR R A S R A S P R R R AN S B RS R S T

In the spring of 1992 we began an effort to adapt this introductory computer science course to a breadth-first approach.
The goal of this approach Is to give students an overview of the entire computing milieu. The challenge is to develop a course
that is rigorous enough to prepare the computer science majors for the follow-on courses, yet, at the same tirme, be both
meaningful and accessible to the large number of non-compuier science majors who take the course.

i

:

{
T
4
b

-

There are several good textbooks available that present the major aspects of computing such as compuler architecture,
operating systems, algorithm development, programming language paradigms, databases, and networks. However, most texis
lack an integrated laboratory component. To overcome this deficiency we have embarked on a National Science Foundation
funded project (RUE 9254317) to develop a laboratory environment for a breadth-ficst computer science overview course.
This environment is composed of a collection of software modules, collectively know.1as “Watson.” We chose the name

Watson to emphasize that the environment is to act as an assistant that helps the student explore various aspects of
computing.

RS SRR

In the past, we attempted 1o have students complete small assignments using off-the-shelf software in an open lab
environment. We found that our open laboratories, which are successful for more advanced computer science courses, did
: not work well for C3100. The students were overwhelmed by the syntactic details of the various software tools they were
. expected o use and many students ended up very frustrated. 1t does not have to be this way. With the proper hardware and

: software, students can be presented with a positive learning experience that Increases their understanding of, and
- appreciation for, computing.

Background

watson is designed to support a breadih first approach to computer science. Serlous discussion of this approach started
with the Denning committee report {Denning, et. al., 1989] that describes a three course sequence for a breadth-first
introduction to computer science. This report was the starting point for the development of Curricula 91 [Tucker, et. al,,
1991] that described the core areas of an undergraduate computer science curriculum as a set of knowledge units within ten
major topic areas. Exposure of students to the breadth of computing i a philosophy pervasive in these efforts and in our

laboratories. We have also adopted a philosophy of closed lab sessions and provisions for group work, as recomrmended by
the Curricula 91 report.

The breadth-ficst approach has influenced courses and textbooks for computer literacy. Computer Science: An
Orerview, by Glenn Brookshear [4th. Ed., 1994], is an excellent text aimed at the same student audience as our laboratories.
We are currently using this text In our C3100 course. It avoids the syntactic complexdties of any particular programming
language or software package and, instead, focuses on the “bigger issues.” However, Brookshear’s text lacks an integrated
laboratory component. Another text, The Analytic Engine, by Rick Decker and Stuart Hirshfield, comes the closest to our
project since it contains an integrated laboratory environment. They state that “students are both relieved that the course de-
emphasizes programming and are interested to find 6ut that there is more to computer science.” {Decker, 1990, p. 235].
Anothier interesting approach i~ provided by Alan Biermann in his text Great Ideas in Computer Science: A Gentle
Introduction [1990]. These types of changes to computer literacy instruction are discussed in an excellent paper. “The New
Generation of Computer Literacy,” by Paul Myers [1989].

A recent report, America’s Academic Future, issied by the National Science Foundation [NSF, 1992], identifies many of
the larger issues fa: ing Americar education. One of the primary recommendations is to “Encourage the development of
discovery-oriented .earning ervironments and technology-based instruction at all educational levels.” [p. 4] There is a
particular emphasis o1 the 'sse of “new communication, information, and visualization technologies.” We strongly believe the
goals and objeaives of our project are in concert with these recommendations.

The Laboratory Enviromvwent

wWhile ft would be tempting to simgv search the Iniernet for public domain packages that cover the *apics of interest, we
believe that such an approach would be cou: * :d to failure with freshman-level students. At this level, syn < and “look and
feel” issues are major hurdles. A freshmas student presented with many unrelated environments would spend the majority of
the semester just learning how to use the software environments, rather than actually solving preblerns with them. It is clear

that a single, consistent, fexible software emvironment, specifically designed to support computer-based problem solving, Is
needed.

Our laboratory modules incorporate a number of guidelines we have developed based on our expericnces introducing
freshmen to computer science. These guidelines include:

e Present 2 uniform envirciment that minimizes the need for keyboard input and prevents the introduction
of syntax errcrs.

National Educational Computing Conference 1994. Boston, MA

BEST COPY AVAILABLE J

o Provide a consistent help system that includes information on how to use the environment, as well as
high-level problem solving assistance.

o Allow for both “tutorial” and “guided discovery” laboratory experiences.
o Allow for fexibility and ease of modification.

In addition, as a practical matter, the software must be able to run on a variety of computer platforms such as PCs and
UNIX workstations.

We have observed that many CS100 students feel uncomfortable in front of a keyboard. The mechanics of typing and
entering commands and correcting mistakes are difficult for some. A more widely recognized problem is the difficulty

students fave with programming language syntax. Our approach to these problems s to use syntax directed editors so that
only syntzctically correct “programs” can be entered, and to limit keyboard input wherever practical.

The help system In each of the laboratory modules has been designed to provide two types of assistance: information
about the software laboratory environment, and problem solving assistance. To invoke the first typ of help the student
presses 2 button marked “What is?” and then clicks on the item for which help is to be provided. A popup window appears
with a description of that item. The second type of help involves problem solving advice. Initially, when laboratory exercises
are written, the faculty members authoring those gxercises provide a collection of helpful hir ts to avoid common pitfalls. This
advice Is incorporated into the sofiware and displayed whenever the student indicates their need for assistance.

In order for Watson to gain the widest possible acceptance, we do not want to limit it to any one pedagogical siyle.
Instead, our goal is o build enough fexibility Into the software so that it can be used with a range of pedagogical techniques
from fully scripted tutorials to directed discovery. Flexibility is also {mportant in another sense. It should be possible for
instructors who use this software to adapt it to_their own style with as little pain as possible. For these reasons, our software is
organized into three distinct “levels”, The first level, the “message level,” is a keyed text file. The existence of this level allows
instructors with limited programming ability to quickly change certain aspects of a laboratory exercise, such as the definition
of terms, or explanation of a probiem. The second level, the “activity level”, is a C source program that incorporates
number of specialized functions that allow this level to sense and control activities at the underlying level. Instructors with a
working knowledge of € programming should be able to change most aspects of a laboratory exercise without needing to
learn the details of the underlying software environment. The final level is the “laboratory environment level” which actually
defines all of the software objects that make up a laboratory environment.

A final requirement, that we established early on, was that all software developed under this project must run cna
variety of hardware platforms, especially UNIX workstations and Windows-based PCs. The ability to run on Macintosh
computers was also considered important. To meet these requirements, we selected SUTT, the Simple User Interface Toolkit
[Conway, 1992]. This product, developed at the University of Virginia, provides a flexible, easy to use, extensible environment
that allowed for rapid prototyping of the user interface and provided for cross platform compatibility. SUIT is currently
available under X-windows, Microsoft Windows, DOS, and Mac 0, and is free of charge for academic projects.

Description of the Laboratory Activities

We a~~ using our first year funding to develop eight laboratories. We describe two lahoratories in detil below and
provide a brief description of the others. Each lab has two levels of presentation: a concrete, hands-on component where
students manipulate objects and observe results and an abstract level where the underlying theory can be used to produce the
same results.

Spreadsheet Laboratory

This simplified spreadsheet program allows students to enter arrays of data and to calculate additional data hased on
existing data, Sample calculations are summation, average, and projection of values based on specified growth rates. Unlike 2
real spreadsheet package, this environment is tightly constrained and monitored. If the student starts going far astray in
completing an activity, the system provides intéractive help to get him or her back on track. The concrete level is the data as it
appears in the table and that can be manipulated through mouse input. The abstract level includes the mathematical
equations that define the relationships between data values.

Relational Database Laboratory

The main activites In this lab Involve composing yueries to answer speciic questions concerning one or more tables of
data. An initial academic database is provided with three tables: a student information 1able, a table of classes attended, and a
faculty table that includes classes taugat. The data has heen simplified so that the student can focus on the primary activity:
database queries. Querics involve one or more tables and use of the operations project, select and join. There are two modes

“Recreating the Retolution”

317

aryrii e o, XEeal e
AL e L3 L
b ! .

i ‘;'"F Rk o

¥ TR A AN T e St PN
L ira \ G et o R S Ao ihe s e

XY
s e Ca

T o T Ty TV R, Y O Pt 807 1 SR (T e T
L RS R SR T PR TRE SR AN L e SRR

el

of operation: query by example (the concrete level) and query by relaticnal equation (the abstract level). With query by
example selecting a column headings is equivalent to a project operation, fnatching two column headings from two tables Is a
join, and applying restrictions to values Is a selection. As these concrete actions take place, the corresponding relational

equations appear on the screen. During the second pari of the assignment the student has to enter relational equations
directly to obtain the desired resuls.

Data Structures Laboratory

The cata structures lab is intended to familiarize students with the behavior of common data structures, such as stacks,
queues, and trees. For example, a stack data structure Is presented on the screen as a graphical object that may be activated
by clicking on buttons such as “push” or “pop,” the concrete level of operation. At the same time, a sequence of instructions
is displayed. At the abstract level the student must solve a problem by entering a correct list of instructions and executing
them. A sample task might be creating the reverse of a given stack.

Graphics Laboratory

The graphics laboratory introduces students to several fundamental concepts in computer science: declaration of object
types, assignment of values to ebjects, and Interactive manipulation of objects. A complete screen layout appears in Figure 1.
The upper left window contains variable declarations, where choices such as point, line, circle or polygon are selected iroma
menu of push buttons. Objects must be declared before they are assigned values in the program code window. Commands
such as draw and color produce changes in the drawing window. The bottom tutor window can display a description of the
problem to be solved or provide assistance when errors in the student’s code are detected.

»
.
2 B
1 K
.
.

<((41,124),(109.423))
* dravigl]
* leep 40

Simes

Figure 1. Screen Layout for the Graphics Activity

There Is a duality between the program declarations and code (the abstract level), shown in the left windows, and the
picture constructed in the drawing window (the concrete level). The student can “paint” a picture in the drawing window and
watch the corresponding declarations and commands appear in the left windows, or the student can enter declarations and

commands to cause a picture to be drawn In the right window. Students should be able to draw simple pictures using either
approach.

The Imperative, Functional, and Logical Programming Paradigms

All three programming paradigms use syntax directed editors designed to allow students to enter syntactically correct
programs and to minimize the use of keyboard Input. Programming assignments are very short since the goal is not to teach
the student to program well in any one language, rather it is to expose students to a variety of programming paradigms. The
semantics of 4 program can be defined by its input/output behavior; we consider this the abstraction of the program. The

actual implementation in a particular paradigm or using a particular technique (e.g., fteration versus recursion) represents
the concrete level of understanding.

BEST COPY AVAILABLE

- National Educational Compuling Conference 1994, Boston, MA

S

T T e - TR R e T A TR e e T T T e
R A R e N L R T R D Y e DAY
SRR G I P B G b A AR R T A RS S e BT B Tt T

!

>
Y
i

The imperative programming language is subset of a Pascal-like language with type declarations and commands for
selection, iteration, and procedure Invocation. Procedures with or without parameters can be declared. All entry is via an
editor that insures the syntzx and static semantics of the program are correct. Laboratory assignments do not involve lengthy
programs, rather most focus on a few very small procedures designed to work together to accomplish 2 particular task.

<

AL

VAR B X
xdto‘ﬁl. Ed, et e Y e T,
ST TR L

< el

PN

£

(dbchun lan {1}
cord

((roll(cdrlo)(earts gy
(t{lnt{cér bZ)}
)

g;'l())
oc Car of () not defined

Figure 2. The Syntax Directed Editor for Lisp

We use the Lisp editor, as pictured in Figure 2, to {llustrate a syntax directed editor; the other editors are of similar
design. The following pull down menus are available: Control {defun, cond), Lists (car, cdr, cons, list, append), Tests (eq.
null, atom, listp, zerop), Math (+, -, *,/), and Constants (t, nl, quote, {<list>)). A function that is defined for the first time
is normally entered in a top down manner by selecting a defun option, naming the function, specifying the parameter list and
specifving the function body. Once the function ndme and parameters are specified, these names appear in the windows
called “Function List” and “Parameter List". From this point on, references to function names and parameters are through
selection, not keyboard entry.

Lab activites involve writing simple functions that may manipulate lists, such as the “last” function shown, or perform
simple arithmetic operations, such as a factorial function. We do not allow any selq operations and we depend on recursion
to perform repetition. The intent of this lab is to expose students to the “look and feel” of a functional programming
language. ’

The logic programming laboratory will use a syntax directed editor for a subset of Prolog that fs similar to the o: -
described above for Lisp. Logic programming is introduced from a relational perspective, similar to the academic database
used in the Relational Database Laboratory. Next the list manipulation facilities of Prolog are introduced. Some of the simpler
functional programming activities are replicated for Prolog.

Digital Logic Laboratory

This laboratory covers two topics: combinatorial logic and sequential logic. The concrete level of operation are the gates
and flip-flops used to build circuits; the abstract level is the Boolean equatior: that represents the behavior of the circuit (or
the Uming diagram for a sequential circuit). Students frst build simple combinatorial circuits using AND, OR and NOT gales.
The lab environment allows circuits to be named and then recalled as “black box™ devices. For example, gates are used 1o
build a half-adder which is stored in a tiser defined library. The half-adder s used to build a full-adder, which In trn can he
used to build a four bit adder. A major goal of this fab Is to be able to write 2 Boolean equation for any connection in the
circuit or, given a Boolean equation, build the corresponding circuit. In the final combinatorial logic activity the student
builds a tatch in the form of 2 D Nlip-flop and then adds a clock signal to obtzin the familiar edge-triggered D flip-flop. Shilt
cegisters, counters, ring counters, and parallel-to-serial converters are studied. Students are Introduced to the use of timing
dizeranis to analyze sequential crcuits.

“Recreating the Rerolution™

349

BEST COPY AVAILABLE

M?M“Wrw* ‘3'-'&5:"{_ Lxti

W 3¢ ¢ SRICIIPIN QY 2p ot

*
23

e L UL

Possible Laboratories for Future Development

We hope to develop additional laboratories to cover a broader range of topics. This would allow an instructor to pick
and choose topics to meet the needs of a particular target audience. For example, a computer literacy course targeted for
business or education majors may elect to cover the applications and programming language paradigms, but might not cover
the hardware and theory orfented compenents. On the other fand, a computer literacy course for engineers may elect to de-
emphasize the business components and include all the hardware-oriented components. Here we only briefly describe three
of the laboratories that are candidates for future development and list some others.

o

MR .
ARG IR

x

Finite State Automata Laboratory

Students would work in a graphical environment where they can construct and test simple finite state automata. An
example challenge might be: design an FSA to accept a string of 0's and 1's if the pattern 100 appears anywhere in the string.
A sample solution appears below.

v P ISR IR
vt TSN AUy H

Automatic Theorem Proving Laboratory

Automatic theorem proving Is first introduced with the logic programming laboratory. This lab focuses on two main
toplcs: translation from English to Brst order predicate calculus to clausal form and then mechanically constructing a
resolution proof. Although this topic may appear to be beyond a typical student in a computer literacy class, we have had
-_: some success In the past given a well designed lab activity to introduce resolution theorem proving [Gasser, 1992].

Machine Organization and Assembly Language

We will devise a simple assembly language whose execution can be simulated with a “model” computer. This mode! will
contain the {nstruction register, decoding logic, program counter, RAM memory, arithmetic-logic unit, and register set.
Students will be able to enter assembly language programs and execute them, step-by-step. In this way students will learn
about op codes, addressing modes, and data manipulation for a simple computer.

Other topics we may develop labs for are:
» Artificial Intelligence Laboratory
» Software Engineering Lavoratory
» Programming Language Translation Laboratory
e Operating Systems Laboratory - -

» Distributed and Parallel Processing Laboratory

* Ethics and Computing

1n addition to constructing more laboratory modules, we plan to extend the work described in this paper in a number of
R - directions. One direction we wish to explore is theuse of multimedia, including digitized voice and video. We are also
interested in innovative input techniques such as speech recognition and pen-based input.

Assessment, Evaluation and Availability of Materials

g . We intend to insure that the laboratory experiences are useful from a pedagogical standpoint, by following a rigorous
o evaluation program. We are conducting our formative evaluation using the following approaches:

S o the teaching is being monitored by laboratory developers who have not been assigned as the instructor

e examination results are scrutinized to indicate laboratory strengths and weaknesses

350 . National Educational Computing Conference 1994, Boston, M1

o abiak s 2y 50

v 4 TS TTETRT T P E

o the laboratory sessions are monitored by graduate students who report on general use of the laboratory
software

¢ laboratory sesslons are moaitored electronically by keeping a history of activities for each student

* students are asked to evaluate the course content and laboratories using Instruments specifically designed
to evaluate these course materfals

« students complete the standard evaluation forms

We plan to use pre and post tests to measure the changes in, and generalization of, problem solving abilities.
Standardized instruments for measuring student attitudes will also used.

Once the laboratories are fully developed and refined at Louisiana Tech University, we plan to make them available over
the Internet using ftp. We have Initially targeted two platforms: Sun Sparcstatons and IBM PCs. Almost any Sparcstation with a
color monitor can be used. The IBM PCs require Windows 3.0 or higher and SVGA graphics support.

References
A. W. Biermann, Great Ideas in Comptier Sdence—-A Gentle Introduction, The MIT Press, Cambridge, MA, 1990
J. G. Brookshear, Computer Science — An me_ew, 4th.Ed., Benjamin/Cummings Pub., Menlo Park, CA, 1994

M.]. Conway, The SUIT Version 2.3 Reference Manual, University of Virginia, 1992 (inquiries can be made at
suit@uvacs.cs.Virginia.edu) .

R. Decker, S. Hirshfield, “; Survey Course in Oombutm: Science Using HyperCard™, SIGCSE Bulletin, Vol. 22, No. 1, February
1990, pp. 229-235

R. Decker, S. Hirshfield, The Analytic Engine, Wadswonh Belmont, CA, 1992

P.]. Denning, D. E. Comer, D. Gries, M. C. Melder, A. Tucker, A. J. Turner, P. R. Young, “Computing as aDlscphne" CACM,
Jan. 89, vol. 32, no. 1, pp. 923

R. Gasser, Logic Tutor: An Intelligent Tutoring System for Resolution Refutation Proofs, M.S. thesis, Louisiana Tech University,
1992

B. L. Kurtz, M. B. 0"Neal, An Interdisciplinary, Laboratory-Oriented Course Sequence for Computer-Based Problem Solving,
proposal funded by the National Science Foundation, DUE 9254317

J. P. Myers, “The New Generation of Computer Literacy”, SIGCSE Bulletin, Yol. 21, No. 1, February 1989, pp. 177-181

National Science Foundation, “America’s Acadentic Future: A Report of the Presidential Young Investigators Colloquium on
U.S. Engineering, Mathematics, and Sclence Education for the Year 2010 and Beyond”, J. Lohman and J. Stacey (co-
chairs), Directorate for Education and Human Resources, January 1992

A. Tucker (ed.), et. al., Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force, ACM Press,
1991 ’

(Y AT T AU W K 000 DINTR TN W R THI A mm A S by 0 i s TUIR 8 WS L MW A AP AT LA DWW L o M NS AL

